Evaluation Basics for Non-evaluators

The webinar will begin at 1 p.m. Eastern

Introductions

Mike Lesiecki
Lori Wingate
Elaine Craft
Behind the Scenes

Emma Perk
Cynthia Williams
Janet Pinhorn
Shannon Payne

EvaluATE

Webinars
Resource Library
Blog and Newsletter
ATE Survey Data

www.evalu-ate.org
Join us next month for
Creating One-Page Reports:
A Strategy for Engaging Busy Readers
April 18, 2018 1-2 p.m. Eastern

www.evalu-ate.org

www.mentor-connect.org
Materials

Slides Resource Handout Recording
This material is based upon work supported by the National Science Foundation under grant number 1600992.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the presenters and do not necessarily reflect the views of NSF.
Meet Jen Genericson*

She has a GREAT idea for an ATE proposal

*This is a fictional character and project. Any resemblance to actual persons or projects is coincidental.
EVALUATION: All projects and centers carry out evaluative activities. The funds to support an evaluator independent of the project or center must be requested, and the requested funds must match the scope of the proposed evaluative activities.

What is evaluation?

What will happen?

How much does it cost?

Where does it go in a proposal?

Why do it?

Who can do it?
WHAT IS EVALUATION?

e·val·u·a·tion
: determination of the value, nature, character, or quality of something or someone

Image source: expertcytometry.com
1. Asking important questions about a project’s processes and outcomes.

2. Gathering evidence that will help answer those questions.

3. Interpreting findings and answering the evaluation questions.

4. Reporting and using results for accountability, improvement, and planning.

Image source: expertcytometry.com
1. Asking important questions
 - Goal achievement
 - Implementation
 - Outcomes
 - Sustainability

2. Gathering evidence
 - Research methods
 - Institutional data
 - Course evaluations
 - Expert feedback

3. Interpreting findings
 - Strength and weaknesses
 - Extent, direction, and importance of outcomes

4. Reporting and using results
 - Improvement
 - Planning
 - Accountability
 - Evidence of capability
 - Build knowledge base

EVALUATION

ACTIVITIES ➔ SHORT-TERM OUTCOMES ➔ MID-TERM OUTCOMES ➔ LONG-TERM OUTCOMES
PROJECT LOGIC MODEL

ACTIVITIES

- Develop and implement Tech Prep course
- Develop first-generation student support resources
- Develop and implement intrusive advising strategies

SHORT-TERM OUTCOMES

- Pass rate for technical courses increases
- More students stay enrolled

MID-TERM OUTCOMES

- Students persist in technical programs
- Students graduate with marketable tech credentials

LONG-TERM OUTCOMES

- Graduates transfer to STEM programs at four-year colleges
- Graduates enter technical workforce

ACTIVITIES

- Develop and implement Tech Prep course
- Develop first-generation student support resources
- Develop and implement intrusive advising strategies

EVALUATION QUESTIONS

1. To what extent are the Tech Prep course, first-generation student resources, and intrusive advising meeting the needs of students?
EVALUATION QUESTIONS

SHORT-TERM OUTCOMES

PASS RATE FOR TECHNICAL COURSES INCREASES

MORE STUDENTS STAY ENROLLED

2. To what extent and how is the project impacting students’ success in technical courses?

3. To what extent and how is the project impacting students’ ability to navigate college and stay enrolled?

EVALUATION QUESTIONS

MID-TERM OUTCOMES

4. To what extent and how is the project impacting retention in technical programs?

5. To what extent and how is the project impacting technical program completion rates?

STUDENTS PERSIST IN TECHNICAL PROGRAMS

STUDENTS GRADUATE WITH MARKETABLE TECH CREDENTIALS
EVALUATION QUESTIONS

1. To what extent are the Tech Prep course, first-generation student resources, and intrusive advising meeting the needs of students?
2. To what extent and how is the project impacting students’ success in technical courses?
3. To what extent and how is the project impacting students’ ability to navigate college and stay enrolled?
4. To what extent and how is the project impacting retention in technical programs?
5. To what extent and how is the project impacting technical program completion rates?

RESOURCES

Logic Model Template for ATE Projects and Centers
Logic Models: Getting Them Right and Using Them Well
Evaluation Questions Checklist for Program Evaluation
EVALUATION: All projects and centers carry out evaluative activities. The funds to support an evaluator independent of the project or center must be requested, and the requested funds must match the scope of the proposed evaluative activities.
Evaluation Budgeting Rule of Thumb:
Dedicate 10% of project budget to evaluation

Total Project Budget:
$225,000 over 3 years

10% EVALUATION BUDGET:
$22,500 total
$7,500 per year
- Evaluator’s time
- Travel costs for site visits
- Evaluator’s overhead costs
EVALUATION: All projects and centers carry out evaluative activities. The funds to support an evaluator independent of the project or center must be requested and the requested funds must match the scope of the proposed evaluative activities.

INDEPENDENT EVALUATION IS REQUIRED

WHY DO IT?
Improvement

Accountability

Evidence

ACTIVITIES
- Develop and implement Tech Prep course
- Develop first-generation student support resources
- Develop and implement intrusive advising strategies

SHORT-TERM OUTCOMES
- Pass rate for technical courses increases
- More students stay enrolled

MID-TERM OUTCOMES
- Students persist in technical programs
- Students graduate with marketable tech credentials

LONG-TERM OUTCOMES
- Graduates transfer to STEM programs at four-year colleges
- Graduates enter technical workforce
Rebranding the 21st Century IT Technician

Asa Bradley, Spokane Community College

In our original plan, we had set aside money for five college students to help us for eight hours during the summer camp.
97 percent of the volunteers indicated that experience increased their confidence and ability to work on a team.

Because of the questions our evaluator asked, we have the data to justify moving resources around in our budget.
Accountability

Annual reports submitted by principal investigators to NSF:

- Report on goals, activities, objectives, results, outcomes
- Upload evaluation report

- Use data to justify change in project plans

Evidence

The Project Description must begin with the subsection on Results from Prior NSF Support.... This subsection must contain specific outcomes and results including metrics to demonstrate the impact of the project activities.
Example A
The prior project was funded to increase the number of students completing technical degrees and transferring to 4-year STEM programs. Funded activities included developing a Tech Prep course, enhancing advising, and developing support resources and strategies for first-generation college students.

Example B
All project objectives were achieved: 150 students enrolled in the new Tech Prep course. 300 first-generation students benefited from newly developed resources aimed at addressing their diverse needs. 25 faculty members were trained in intrusive advising and reported using proactive advising strategies.

Example C
The 5-year average pass rate for technical courses increased from 62% to 85%. Year-to-year persistence in technical programs increased from 45% to 66%. Students said that personal guidance from faculty and peer advisors was essential to helping them overcome challenges they faced while pursuing their education.

POLL: Which is the best evidence of outcomes?

<table>
<thead>
<tr>
<th>Example A</th>
<th>Example B</th>
<th>Example C</th>
</tr>
</thead>
<tbody>
<tr>
<td>The prior project was funded to increase the number of students completing technical degrees and transferring to 4-year STEM programs. Funded activities included developing a Tech Prep course, enhancing advising, and developing support resources and strategies for first-generation college students.</td>
<td>All project objectives were achieved: 150 students enrolled in the new Tech Prep course. 300 first-generation students benefited from newly developed resources aimed at addressing their diverse needs. 25 faculty members were trained in intrusive advising and reported using proactive advising strategies.</td>
<td>The 5-year average pass rate for technical courses increased from 62% to 85%. Year-to-year persistence in technical programs increased from 45% to 66%. Students said that personal guidance from faculty and peer advisors was essential to helping them overcome challenges they faced while pursuing their education.</td>
</tr>
</tbody>
</table>
RESOURCES

Resources highlighted in the webinar:

- The LOGIC MODEL TEMPLATE FOR ATE PROJECTS AND CENTERS includes guidance and examples relevant to the National Science Foundation’s Advanced Technological Education (ATE) program.
- LOGIC MODELS: GETTING THEM RIGHT AND USING THEM WELL is a practical guide that demonstrates how to develop a logic model and use its contents to support a grant proposal.
- The EVALUATION QUIDEL Checklist for Program Evaluation offers criteria for effective and appropriate evaluation methods.

Changing Focus Mid-project (Asa’s blogpost)

Results from Prior NSF Support Checklist

WHO CAN DO IT?
EVALUATION: All projects and centers carry out evaluative activities. The funds to support an evaluator independent of the project or center must be requested, and the requested funds must match the scope of the proposed evaluative activities.

Believe It or Not!

PROFESSIONAL ASSOCIATIONS

American Evaluation Association

Canadian Evaluation Society

ACADEMIC JOURNALS

JMDE

AMERICAN JOURNAL OF EVALUATION

PROFESSIONALS

Photo credit: American Evaluation Association | www.eval.org
What to look for in an evaluator

- Experience as an evaluator
- Social or educational research skills
- Communication skills
- Understanding of NSF and 2-year-college contexts

Evaluator A
- Ph.D., Higher education administration
- 10 years of experience leading accreditation teams for technical programs at two-year colleges
- Published 5 research articles and 2 book chapters on technical education and student services

Evaluator B
- M.A., Organizational psychology with emphasis in program evaluation
- Currently serving as lead evaluator for 25 NSF-funded projects
- Recipient of Outstanding Evaluation award from American Evaluation Association

Evaluator C
- M.S., Information technology
- Retired dean of technical programs at community college
- Received more than $4 million in NSF grants over 20-year career

POLL: Which evaluator would you recommend?
Evaluators' Details

Evaluator A
- Ph.D., Higher education administration
- 10 years of experience leading accreditation teams for technical programs at two-year colleges
- Published 5 research articles and 2 book chapters on technical education and student services

Evaluator B
- M.A., Organizational psychology with emphasis in program evaluation
- Currently serving as lead evaluator for 25 NSF-funded projects
- Recipient of Outstanding Evaluation award from American Evaluation Association

Evaluator C
- M.S., Information technology
- Retired dean of technical programs at community college
- Received more than $4 million in NSF grants over 20-year career

What is your experience with project evaluation?

Do you have time to work on my project's evaluation?

Who would do most of the work and what are their credentials?
What research methods do you have experience with?

What is your experience as an external evaluator of grant-funded projects?

Evaluator A
- Ph.D., Higher education administration
- 10 years of experience leading accreditation teams for technical programs at two-year colleges
- Published 5 research articles and 2 book chapters on technical education and student services

Evaluator B
- M.A., Organizational psychology with emphasis in program evaluation
- Currently serving as lead evaluator for 25 NSF-funded projects
- Recipient of Outstanding Evaluation award from American Evaluation Association

Evaluator C
- M.S., Information technology
- Retired dean of technical programs at community college
- Received more than $4 million in NSF grants over 20-year career

RESOURCE

Guide to Finding and Selecting an Evaluator
Always check NSF’s PAPPG!

But don’t expect much direction for the evaluation section of your proposal

Updated for 2018
Proposal Components

- ✔ Cover Sheet
- ✔ Project Summary
- ✔ Project Description
- ✔ References Cited
- □ Biographical Sketches
- ✔ Budget & Budget Justification
- □ Current & Pending Support
- □ Facilities, Equipment & Other Resources
- ✔ Supplementary Documents

Information related to the evaluation is needed in these sections.
Proposal Components

- Project Description 15 pages
 - Results from Prior NSF Support
 - Rationale
 - Goals, Objectives, Deliverables, Activities
 - Timetable
 - Management Plan
 - Roles & Responsibilities of Senior Personnel
 - Plan for Sustainability

- Evaluation Plan
 - Dissemination Plan
 - Intellectual Merit
 - Broader Impacts

Project Description

Evaluation plan should be 1-3 pages.
Aim for 1½ pages.
Evaluation Plan

Evaluator
Evaluation questions
Data collection
Data analysis and interpretation
Evaluation deliverables and uses
Evaluation timeline

If possible, avoid DIY evaluation plans: Get help from the evaluator you intend to work with or someone else with evaluation expertise.

RESOURCES

Evaluation Planning Checklist for ATE Proposals
ATE Proposal Evaluation Plan Template

The webinar is available at evalu-ate.org/ate-proposal-evaluation-plan-template.
WHAT WILL HAPPEN?

- Establish formal agreement between evaluator and project's institution
- Develop actionable evaluation plan
- Establish relationship with institutional research office and obtain baseline data
- Develop data collection instruments
- Begin data collection
- Deliver Year 1 eval. report

YEAR 1
- Planning
- Data collection
- Analysis
- Reporting & Use

YEAR 2
- Data collection
- Analysis
- Reporting & Use

YEAR 3
- Data collection
- Analysis
- Reporting & Use
What is evaluation?

What will happen?

How much does it cost?

Where does it go in a proposal?

Why do it?

Who can do it?